range of the integration order to 1=N =15; an opti-
mum value for this parameter should be about 10. While
compromises in numerical accuracy and efficiency be-
tween m and N are obvious, no practical rule yielding
optimum values of these parameters (for a particular orbit
case) has yet been determined. Experience with various
types of orbital trajectories may furnish such a rule.

The integration mode used should normally be predict-
pseudo correct (P-PC). The important difference in the
modes is that DPTRA]J integrates one orbit per multirevo-
lution step in the P and P-PC modes, but must integrate
twice per step in the P-C mode. The expense of a
DPTRA] integration (well over 90% of the total computer
time required for a multirevolution step), and the rela-
tively small gain in accuracy by the use of P-C over
P-PC, should limit the use of the P-C mode.

Printed output appears once every h orbits (starting
with the first), and consists of the five osculating Kepler
elements, a, ¢, i, Q, o, the current trajectory time in Ephem-
eris Time, and the orbit number k. The sixth element, T,
is zero, since periapsis is the reference point. The refer-
ence coordinate plane for the elements is the mean earth
equator of 1950.0, the coordinate system used by DPTRA]J
in the single-orbit integration. Other standard two-body
orbital parameters, such as ¢, and ¢;, will be available.
The capability to plot individual orbital elements versus
the revolution number k will also be available as a user
option.

Restrictions in the use of LEAP are:

(1) The increments in the orbital elements over one
revolution, Aa, must be sufficiently “smooth” func-
tions of the revolution number k so that the func-
tions f(a, k) = Aa can be adequately represented
by polynomials of fixed degree over a substantial
range of values of k. This corresponds physically
to the assumption that the perturbing forces vary
smoothly and slowly from orbit to orbit. Thus, the
technique may not adequately account for perturb-
ing forces which are not near-periodic with respect
to the orbital period of the probe. Such a perturb-
ing force would be that due to tesseral harmonic
gravitational terms associated with a nonspherical
central body with a rotational period not small
compared to the orbital period of the probe.

(2) The initial conditions input to the program must
correspond to an elliptical orbit.
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(3) The starting procedure for the multirevolution inte-
gration is a compromise between machine time
efficiency and numerical precision. The resulting
number of single orbits, J, computed by DPTRA]J
(in P-PC mode) during this starting process is equal
to Ns + 1, where s is the smallest integer such that
281 =>m. Thus for the case N = 10, m = 100, we
have J = 81.

(4) The interpolation procedure allows the computa-
tion of the state vector at grid points intermediate
to the large grids. Interpolation is not valid for
computing the state at time points between the
fine grids (i.e., at any point on the orbit other than
periapsis) since the functions f,, = Aa,, are not
defined between fine grid points.

(5) The computer time required for a given case de-
pends heavily on the choice of m and N, and of
course, on the total number of revolutions inte-
grated.

B. Communications System Research

1. Ranging With Sequential Components, R. M. Goldstein

a. Introduction. The JPL ranging system is being
redesigned with the goal of extending its capability to
weaker thresholds without lowering its present high level
of accuracy. Simplicity of design is also considered an
important goal.

Sequential components allow the full ranging power to
be available for each step of the search. Power does not
have to be shared among the components. A further
advantage is freedom from combinatorial restrictions; i.e.,
the component lengths need not be relatively prime.
Square waves (sequences of length 2) have been chosen
for all of the components.

b. Method. This system has been designed so that the
RF carrier loop provides the entire tracking function. The
receiver coder is geared to the received RF so that the
coder necessarily runs at the same rate as the received
code. The time of flight measurement is then made open
loop.

Figure 30 is a functional block diagram of the system.
Here f., a submultiple of the transmitted frequency, is the
clock for the transmitter coder. The RF doppler is multi-
plied by a fixed ratio to provide the proper frequency for
the code doppler.
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Fig. 30. Functional block diagram of the ranging system

The system operates as follows: With the doppler
switch open, the two coders are synchronized. At time ¢,
the switch is closed. Thereafter, the timing between the
receiver coder and the received code remains fixed. This
time difference (measured at leisure) represents the time-

of-flight (TOF)** of the signal at ¢,.

The two receiver channels serve to measure the phase
between the received square wave and the receiver coder
square wave. This technique parallels closely the optimum
phase estimator for a sine wave signal. After ¢ seconds, the
integrator outputs x and y are sampled. Figure 31 is a
graph of the dependence of x and y on the time dif-
ference -. It is easily shown that

.
r= s (1)

where T is the bit period, and (x, y) has been assumed in
the first quadrant. A similar formula holds for each
quadrant.

“TOF at t, is ambiguous unless one specifies whether it pertains to
the wave arriving at ¢, or to the one leaving. Conventionally, we
use the former, or “backward looking,” TOF.
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Fig. 31. Integrator outputs plotted as a function of the
transmitter coder—receiver coder time difference

There is, of course, an ambiguity in the measurement.
Since the first (and shortest) component length is 2 ps,
an unknown multiple of 2 us must be added to the TOF.
To resolve this, the receiver coder is switched to the next
slower square wave (the transmitter coder having been
so switched one TOF previously). This procedure is
iterated; each time the integrator outputs (x;, ;) are used
to remove part of the previous ambiguity. The process
terminates when the a priori knowledge removes the bal-
ance of the ambiguity.

c. Accuracy. In the discussion so far, noise has not been
considered. The integrator outputs are only estimates of
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the noise-free case, and

I
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n
y+m
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i

where n and m are independent zero mean gaussian vari-
ates of variance

ol = g3, = N0/2t (2)

where N, is the one-sided noise density, and t is the inte-
gration time.

We use the simple approximation

2——8—Z22 8_72:
TE\R) T\ v

evaluated at ¥ = x,§ = y and Eq. (1) to find that the vari-
ance of the estimate
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D
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of = is approximately
o*> = T*N,/8st (3)
where s is the power in the ranging signal.

d. Component periods. We now consider the following
problem: Should the integration time ¢ be long so that
fewer square waves with widely spaced periods need be
examined; or should many square waves be examined so
that ¢t may be short?

The uncertainty of the time measurement, o;, at each
step need only be small enough to remove the ambiguity
of all of the preceding steps (which equals the previous
bit time Ti71).

koi = Ti—l (4)

The factor k provides a margin, or confidence level. Using
Egs. (3) and (4), we have

3
T; (E> =Ti,
t;
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and

a\"% [a\"%
T (Z) <t_1> =T,

. o "
Tn <t1t2 . tn> - TO (5)

where a = k?N,/8s.

Thus after n steps the uncertainty has been reduced by
the factor

(tts - - - /0% (6)

The total time required for these n steps is

ti+t+ -+t (7)

Using the La{grange multiplier technique to maximize
Eq. (6) while holding Eq. (7) constant, for fixed n one
easily finds that all of the ¢; must be equal. Then the
advantage becomes

(t/a")% (8)
and the penalty becomes
nt 9)

Again, the Lagrangian technique of maximizing Eq. (8)
while holding Eq. (9) constant (assuming n a continuous
variable), shows that

t/a =e

Since the ratio of successive periods, from Eq. (5), is (t/a)*
we see that the ratio

T,/Tny,=¢%=165" - (10)

We choose the convenient nearby integer 2. Hence each
of the sequential components of this system has twice the
period of the previous one.

e. Probability of error. As we have seen, the first highest
speed component serves to measure the time delay with
the most precision. Each successive component then
removes half of the ambiguities left by all of the previous
components. We next consider the probability of making
an error in any of the components 2 through n. Any such
error would invalidate the entire TOF measurement.
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Fig. 32. Integrator outputs plotted against each other,
with time difference as a parameter

Figure 32 shows the integrator outputs x and y plotted
against each other, with r as a parameter, in the noise-
free case. If the previous measurements happen to give
r = 0 + (multiple of T/2), the current measurement need
only distinguish between the two points (s%,0) and
(—s%,0). The answer will be correct if, and only if, x > 0.
This will happen with probability

1 (8t/Ng) %

p (correct) = —- e*dz (11)
T f

<

The same result applies if the previous measurements had
shown that - = T/4, T/2 or 3T/4 + (multiple of T/2).
However, if = T/8 + (multiple of T/2), the current
measurement must distinguish between the closer points
(s%%/2,5"%/2) and (—s'%/2, —s%/2),

One can see from Fig. 32 that the answer will be correct
whenever y > — x. The probability of this event is

1 (st/2Ng) %

1
%

p (correct) = e dz (12)

»

A comparison with Eq. (11) shows a 3-dB loss in this case.
In order to avoid this loss, the receiver coder is shifted
by the amount measured with the first component. There-
after 7 will always equal 0+ (multiple of T/2). The
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Fig. 33. Probability of an error in resolving
the code ambiguities

probability of at least one error is then
pe = 1 — p (correct)**

where n is the total number of components.

Figure 33 is a graph of the probability of error as a
function of the total acquisition energy-to-noise-density
ratio. The final component period (hence the final ambi-
guity time) is taken as a parameter.

f. Conclusions. We have described a ranging system
which uses sequential square wave components. The
shortest has a period of 2 us and each successive component
has double the period of the preceding one. The entire
tracking function is performed by the RF carrier loop,
leaving the time delay measurements to be done open
loop. Formulas have been given for the precision of the
delay measurement as well as the probability of errone-
ously resolving any of the ambiguities.

As an example, suppose it were desired to range
Mariner V at encounter with this system. Suppose that
25 min were available to range to =15 m with 1 sec of
ambiguity and 0.0001 probability of error. Then with
S/N, = 0.206, the first component would require 1 min,
and components 2 through 19 would require a total of
15 min. The round trip time was 9 min. The actual S/N,
was 101, a margin of 27 dB.

2. Ephemeris-Controlled Oscillator Analysis, K. D. Schreder

a. Introduction. An ephemeris-controlled oscillator
(ECO) is a sampled-data phase control system in which
the output phase is controlled by the input phase. The
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